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Introduction

The chinchilla currently is the animal of choice for use as a
model to establish the effects of various parameters of noise and
blast exposure on auditory structure and function.

The behavioral methods in use for measuring hearing in the
animal model are based on conditioning techniques (Miller, 1970;
Blakeslee, et al., 1978). These methods provide valid and
reliable measures of auditory thresholds when properly used, but
do have limitations. First, the data may be affected by differ-
ing animal motivation from session to session and by the training
procedures, particularly when multiple experimenters contribute
to a single data pool. Second, the large investment of time and
effort for both the training and measurement phases of an experi-
ment limits the rate at which animals can be processed and makes
the loss of an animal from a project extremely costly to the
overall effort. A rapid, objective method for measuring hearing
in the animal model would eliminate these limitations of the
behavioral procedures.

A rapid method of threshold assessment, based on the detec-
tion of electrical responses of the auditory system to sound
stimuli, now is being used in some laboratories (Bancroft, et
al., 1991). A chronic electrode is implanted in the auditory
system, usually in the inferior colliculus, and time-locked
responses evoked by brief, rapidly repeated tone bursts are
recorded, then averaged to improve the signal-to-noise ratio.
Several stimulus presentations are made per second and a response
can be detected visually in the averaged waveform after several
hundred presentations. The thresholds obtained in this manner
compare well with those derived from behavioral methods when
signals of the same duration are used for both measures
(Henderson, et al., 1983). Visual detection of the response is
not objective, however, so it is subject to problems such as
criterion differences between experimenters and criterion shifts
across time for individual experimenters.

Several objective methods of detecting averaged electrical
responses have been proposed for use in human evoked-response
audiometry. Two of the methods outlined below have shown the
most promise in terms of objectivity and reliability:

A statistical method based on correlation has been used by
Arnold (1985), Salvi, et al. (1987), and Weber and Fletcher
(1980). If time-locked responses to stimuli are present, the
correlation between two averaged samples of those responses will
be greater than that of the background activity. The background
noise at the recording site is assumed to be random in the
absence of a stimulus, so averaged samples of the noise taken at
different times will not be correlated with one another. To
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determine objectively the presence of responses, samples of
activity time-locked to the stimulus are taken, averaged, and the
correlation calculated between the two sets of averages. If the
obtained correlation is greater significantly than that of the
background, or zero, a response is present.

A second statistical method is based on evaluation of the
ratio of the variance of the background noise to that of the
response evoked by the stimulus (Elberling and Don, 1984; Don,
Elberling and Waring, 1984). The variance for the background
noise is estimated by sampling a single point of the response
waveform across individual stimulus presentations. The variance
of the response is calculated across points of the averaged
recorded waveform. The ratio of the two variances follows the
F-distribution and can be used to determine the presence of a
response with any desired probability of error.

The third method, originally based on the visual detection of
a derived response of the cochlear potential (Pantev and Pantev,
1982; Pantev et al., 1985), has been adapted by Berlin and his
coworkers (Berlin et al., 1991; Hood et al., 1991) for use in
evoked response work involving the central auditory system. A
tone burst, some 20 dB above threshold, repeatedly is presented
together with a continuous tone of the same frequency, but at a
level near the expected threshold. The tone burst then is
presented without the continuous tone. The responses to each of
the stimulus configurations are averaged separately, and then the
two sets of averaged data are differenced. The result is the
response to the continuous tone. Lower thresholds have been
obtained with this method than with more conventional methods.
In addition, as the continuous tone has a narrower bandwidth than
the tone burst, the derived response is more frequency-specific
than can be obtained with conventional methods.

Each of these methods appears to have merit when compared
with conventional, visual methods of threshold estimation, but
they never have been directly compared with one another. The
present experiment was designed to compare the two objective
statistical methods with one another using both conventional
tone-burst data and derived data from the differencing method of
Berlin and his coworkers. The results will be compared with
thresholds obtained using behavioral methods.

Methods

Six 1-to-2-year old male chinchillas bred and raised in the
U.S. Army Aeromedical Research Laboratory (USAARL) colony were
used as subjects. The animals were anesthetized by intramuscular
injection of a combination of Ketamine (40 mg/kg) and Xylazine
(2-5 mg/kg). The anesthetized animals were prepared for aseptic
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surgery by plucking the fur from the top of the head, scrubbing
the plucked area, and swabbing it with Betadine. A lubricant was
applied to the eyes to prevent drying. The animal then was
placed in a stereotaxic instrument and draped. An incision was
made near the midline, the skin retracted, and the exposed skull
cleared of periosteum by scraping. The exposed portion of the
skull then was coated with a solution of silver nitrate followed
by a cyanoacrilate adhesive to provide a stable base for the
cement used in fixing the electrode in place. The skull was
marked according to previously determined stereotaxic coordinates
and a dental burr was used to make a 2 mm opening. After cutting
the dura, a concentric, bipolar electrode was lowered slowly into
the left inferior colliculus while electrical activity evoked by
a broadband click was monitored by an oscilloscope and an audio
system. At the proper depth, as determined by the best response
as well as by the stereotaxic coordinates, the electrode was
cemented in place. The incision was closed and a topical
antibiotic applied to the area.

Data collection was not initiated until a minimum of 2 weeks
was allowed for recovery from the procedure.

The animal was restrained for the electrophysiological
measurementG in an apparatus designed for behavioral testing
(Blakeslee, et al., 1978). The apparatus fixed the animal's head
with respect to movement in the horizontal and coronal planes,
but did not' prevent pinna movement or rotation of the head about
the interaural axis.

Equipment and procedures

Stimuli for the experiment were computer-generated and
controlled. An inverse-FFT routine was used to generate the
digital representations of the acoustic waveforms with
experimenter-specified frequencies, durations, phases, and
amplitude envelopes. The stimulus waveforms were calculated
prior to the experimental sessions and stored in memory. During
experimental sessions, they were output via 16-bit D-to-A
converters and filtered appropriately for the sampling rate.
After conversion and low-pass filtering, the stimuli were
amplified, then led to an electrically-shielded speaker located
inside a double-walled, sound-insulated booth. The speaker was
placed 1 meter in front of the animal. The sound field in the
position occupied by the animal's head was calibrated at each
frequency to be used prior to data collection. The calibration
results were used by the software to set the stimulus levels
desired for experimental conditions by means of a programmable
attenuator.
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The stimuli were 12 ms tone bursts at 250, 500, 1000, 2000,
4000, and 8000 Hz. They had rise and decay durations of 6 ms.
Previous evoked-potential work using these stimuli (Langford,
Mozo and Patterson, 1989) showed them to have acceptable signal-
to-noise ratios and bandwidths. The tone bursts were alternated
with tone bursts temporally centered on a 120 ms tone of the same
frequency, but at a level 15 dB below that of the burst. Since
the time relation between the burst and the tone was fixed, the
relative phases of the two differed at each frequency. At each
frequency, the levels were varied in 5 dB steps over a 25 dB
range encompassing the anticipated threshold. The number of
repetitions was varied depending on the response magnitude
obtained from each animal. In general, 200 to 400 repetitions
for each level at each of four frequencies were run in each
session. Each measurement session lasted approximately 45
minutes.

The experiment was designed so that the same data could be
used to evaluate both of the statistical threshold determination
methods under study. Data were collected beginning 3 ms after
the onset of each tone burst for a period of 25.6 ms and for a
like period of time beginning 51.2 ms after cessation of
stimulation. This yielded background activity interleaved with
responses to the tone bursts and with the tone bursts plus the
long-duration tones. Each of the 25.6 ms data intervals
contained 128 points. Data for each of the intervals were stored
separately for off-line analysis.

The data for each stimulus condition were averaged later in
blocks of 200 to 4000 repetitions. Each data epoch consisted of
128 points; however, adjacent points are not independent. The
partial correlation between points has the effect of inflating
the degrees of freedom used in the statistical tests. Since the
lack of independence between points is a function of the
frequency bandwidth used in the recording, autocorrelations were
calculated for random noise samples generated with the same
sampling rate and bandwidth used in data collection. The
correlations approached zero when every fourth point was used in
the calculations. Therefore, every fourth point was used in the
computations of the correlations and variance ratios during data
analysis.

Pairs of poststimulus waveforms, the results of averaging odd
and even numbered responses to the stimulus presentations,
were correlated (Pearson's r) with one another for each stimulus
condition. The variance ratio for the entire set of data used in
the correlation computations was calculated as F = VAR(S)/VAR(N).
VAR(S) is the variance of the averaged postsignal data taken
during the temporal interval presumably containing the response.
VAR(N) is the background noise variance calculated for a single
point across all responses. This method of estimating the noise
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variance has been shown to be an accurate measure of the variance
of the true background noise (Elberling and Don, 1984). A
response was deemed to be present if the 0.05 level of statisti-
cal significance was reached in 4000 or fewer trials. Threshold
was defined as the mean of the lowest level at which a response
was present and the level 5 dB below it at which no response was
present.

Results and discussion

Tone-burst condition

With the exception of one frequency in one animal, there was
perfect agreement between the thresholds obtained by the corre-
lation and variance ratio methods for the traditional tone burst
data. Since the two thresholds in that one case differed by only
5 dB, they were averaged and the audiograms produced by the two
methods were considered the same. The tone burst thresholds are
compared with a database of 118 behavioral thresholds obtained
from the chinchilla by Patterson, et al. (1991) in Figure 1. The
greatest differences occur at 0.5 and 8 kHz, where the separation
between the two is only 3.8 dB.

The durations of the stimuli used in obtaining the two sets
of thresholds were not the same, however. The evoked-potential
data were obtained using stimuli with an effective duration of 4
ms (Dallos and Olsen, 1964), while the behavioral data are based
on stimuli with durations exceeding the upper limit for temporal
integration in the chinchilla. Henderson (1969), as well as
others (Wall and Ferraro, 1981; Davis and Ferraro, 1983) have
shown the chinchilla integrates the energy of an auditory
stimulus in the same manner as human subjects, at least for
durations up to 100 ms. This would place the 4 ms threshold
stimuli used in the present study some 14 dB below those used for
obtaining the behavioral thresholds. Thus, the sensitivity of
either of the objective statistical methods, when applied to
conventional evoked potential data, is greater considerably than
that of behavioral methods.

A study by Arnold (1985), who used supra-threshold click-
evoked data obtained from human subjects, also compared the
correlation and variance ratio methods with a subjective, visual
method for determining the presence of a response. At 10 dB
above behavioral threshold, the lowest level used in that study,
the correlation method was slightly more sensitive than the
visual method and the variance ratio was the least sensitive.
Her method for estimating the variance of the background activity
was different from that used in the present study, however. In
addition, two replications of 2000 averaged repetitions of
stimulus-evoked activity interleaved with two runs of 2000
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F!Igure 1. Behavioral thresholds compared with conventional tone-
burst evoked thresholds of present study. Tone-burst
evoked thresholds represent combined data from corre-
lation and variance ratio methods.

averaged repetitions of background activity were used in those
calculations, so that changes in the signal-to-noise ratio
between samples could not be ruled out. Finally, no frequency-
threshold values were obtained. Therefore, the results of that
study cannot be compared directly with those of the present
study.

Derived condition

The thresholds obtained from derived data using the two
statistical methods did not show the high degree of correspon-
dence found for the conventional tone-burst data. Differences of
5 dB between the correlation and variance ratio methods for at
least one frequency in each of four animals were found. Because
of these discrepancies, the thresholds for the two methods were
treated separately. The two sets of thresholds are compared with
the one obtained from the conventional tone burst method in
Figure 2. Although others (Hood, et al., 1991) have reported
lower thresholds for the chinchilla at the higher frequencies
using the derired evoked-potential method, no such advantage was
found in the present study. The thresholds based on the derived
waveforms are parallel to and slightly higher than those obtained
with the conventional method.

8



30

EH Buret
S25- - Correlation

S20- - Variance ratio

015-
E.

C 10-

C L -

0 0V -5 1

0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.010.0

Frequency (kHz)

Figure 2. Conventional tone-burst evoked thresholds compared
with derived thresholds. Tone-burst evoked thresh-
olds represent combined data from correlation and
variance ratio methods. Correlation and variance-
ratio derived thresholds are plotted separately.

Several procedural differences between the two studies may
explain the differences in the results. First, the thresholds
reported by Hood, et al. (1991) were based on subjective, visual
inspection of the data. Second, their evoked potentials were
recorded from surface electrodes and may represent activity from
different brain regions than those of the present study. Third,
their continuous tones and tone bursts were not phase-locked as
were those in the present study.

Conclusions

The objectively determined audiograms based on evoked-
potential methods are parallel to those based on behavioral
methods.

When the difference in stimulus duration between the evoked-
potential and behavioral methods is taken into account, the
evoked-potential method proves to be the more sensitive.

The derived-potential method, as implemented in the present
study, is less sensitive than the conventional evoked-potential
method.
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